
UNIVERSITY OF WASHINGTON

Fundamentals of R
Adam Kuczynski

UNIVERSITY OF WASHINGTON

mean(x = c(1, 2, 3, 4, 5))

[1] 3

print(x)

Objects
To create an object, you can use:

<- <<- assignment (right to left)
-> ->> rightwards assignment
= assignment (right to left)

99.9% of the time you will use <- :

object <- value

You should never use = for object assignment. The reason is that = calls two
different functions depending on the context:

Error in print(x): object 'x'

2 / 83

UNIVERSITY OF WASHINGTON

mean(y <- c(1, 2, 3, 4, 5))

[1] 3

print(y)

[1] 1 2 3 4 5

mean((z = c(1, 2, 3, 4, 5)))

[1] 3

print(z)

[1] 1 2 3 4 5

You can fix this by telling R that your = is meant to be an assignment operator,
not argument assignment:

You can also assign object left-to-right using -> , but this is very unusual and
only done in unique circumstances where doing so improves readability of
our code:

value -> object

We'll get back to <<- and ->> later in the course when we learn how to create
our own functions. For now you can forget about them!

3 / 83

UNIVERSITY OF WASHINGTON

Comments
Comments are a very important part of writing R code! When R sees a
comment, it will skip over trying to interpret (i.e., run) that code.

Use the # to write a comment in your R script:

This code is a comment, so R doesn't run it as code

This code is not a comment, so R tries to run it as code

Error: <text>:1:6: unexpected symbol
1: This code
^

Commenting your code helps you:

Remember what a chunk of code does when you return to the code
Communicate with collaborators
Keep your code organized

4 / 83

UNIVERSITY OF WASHINGTON

Atomic Types
R, like other programming languages, keeps track of the type of object you are
working with. It does this much in the same way that we do in our own lives.
For example, we know that our age is a number and our name is a bunch of
characters squished together.

There are four main atomic types in R (there are more, but you most likely
won't use them)

To check the type of a value in R, you can use the typeof() function. For
example:

typeof("Psych548")

[1] "character"

typeof(TRUE)

[1] "logical"

5 / 83

UNIVERSITY OF WASHINGTON

1. Numeric
Numeric vectors (more on these later) are numbers, either integers or doubles
(i.e., floating point numbers, decimals)

Integers: 1, 2, 3, 4, etc.
Doubles: 1.0, 2.43, 3.92, 4.0934853409

To check directly if something is numeric, an integer, or a double:

is.numeric(x)
is.integer(x)
is.double(x)

You can also coerce (i.e., tell R) that you want to store a value as a numeric
object:

as.numeric(x)
as.integer(x)
as.double(x)

6 / 83

UNIVERSITY OF WASHINGTON

is.integer(10)

[1] FALSE

is.integer(10L)

[1] TRUE

Note: Unless you say otherwise, R will store all numeric values as doubles:

typeof(10)

[1] "double"

You can specify a single integer using a whole number following by L :

All integers and doubles are numeric:

is.numeric(30)

[1] TRUE

is.numeric(30L)

[1] TRUE

7 / 83

UNIVERSITY OF WASHINGTON

2. Character
Character vectors contain strings of characters squished together using
quotations. For example:

"This is a string"

[1] "This is a string"

" هذه سلسلة"

" هذه سلسلة" [1] ##

"นี่คือสตริง"

[1] "นี่คือสตริง"

This is also, technically, a string (character type):

""

8 / 83

UNIVERSITY OF WASHINGTON

To check directly if something is of type character:

is.character(x)

You can also coerce values into characters using:

as.character(x)

For example:

as.character(1234)

[1] "1234"

To check how many characters are in a string, you can use the nchar()
function:

nchar("Psych548")

[1] 8

9 / 83

UNIVERSITY OF WASHINGTON

To squish two strings together, use the paste() function:

paste("Adam", "Kuczynski")

[1] "Adam Kuczynski"

To insert formatted values into strings, use sprintf()1:

weeknum <- 2
weekchar <- "two"
sprintf("This is Week %d (%s) of the quarter.", weeknum, weekchar)

[1] "This is Week 2 (two) of the quarter."

glue() will make your life a lot easier!

library(glue)
glue("This is Week {weeknum} ({weekchar}) of the quarter.")

This is Week 2 (two) of the quarter.

[1] see ?sprintf for more information. This is a really powerful function that lets you
do things like format values dynamically.

10 / 83

UNIVERSITY OF WASHINGTON

3. Logical
Logical values are TRUE , FALSE , and NA (more on this later).

Logical types must be capitalized. True is not the same as TRUE .

Logical types are also commonly represented as one uppercase letter:

TRUE , T
FALSE , F

To check directly if something is logical type:

is.logical(x)

You can also coerce values into logical types:

as.logical(x)

is.logical(TRUE)

[1] TRUE

11 / 83

UNIVERSITY OF WASHINGTON

Underneath the hood, R stores logical values as 0s (FALSE) and 1s (TRUE). This
means
you can do math with logical values!

as.numeric(c(TRUE, FALSE))

[1] 1 0

TRUE + TRUE

[1] 2

FALSE + FALSE + TRUE

[1] 1

50 / TRUE

[1] 50

TRUE*3 / 2 + 50^F

[1] 2.5

12 / 83

UNIVERSITY OF WASHINGTON

4. Factor
Factors are a special type of variable that is used to denote categorical values.
These are extremely useful when analyzing categorical data, because R will do
all the dummy coding for you.

Underneath the hood, factors are stored as numeric values with a table of
corresponding levels. This means that factors take up less memory than
characters, and comparing factors will be faster than comparing strings
(because R only needs to compare numbers).1

To check directly if something is a factor:

is.factor(x)

To coerce something into a factor:

as.factor(x)

[1] This likely will not make a difference for you though! The most important
consideration in determining whether or not an object should be a factor is whether it
is categorical.

13 / 83

UNIVERSITY OF WASHINGTON

Coercing a character vector into a factor is easy because R already knows the labels for each
level:

[1] Clinical Social Cog/Per Developmental
[5] BNS Animal Behavior
Levels: Animal Behavior BNS Clinical Cog/Per Developmental Social

--

However, often you will have a numeric vector that represents categorical data. To change
numeric vectors into factors:

agegroup <- c(0, 1, 0, 2, 1, 0)
agegroup <- factor(x = agegroup,
 levels = c(0, 1, 2),
 labels = c("Child", "Adolescent", "Adult"))
print(agegroup)

[1] Child Adolescent Child Adult Adolescent Child
Levels: Child Adolescent Adult

areas <- c("Clinical", "Social", "Cog/Per", "Developmental", "BNS", "Animal Behavio
areas <- as.factor(areas)
print(areas)

14 / 83

UNIVERSITY OF WASHINGTON

Logical and Relational

Operators

15 / 83

UNIVERSITY OF WASHINGTON

Relational Operators:

< , > ,
>= , <= ,
== , !=

Logical operators:

& , &&
| , ||
!

What are operators?
Logical operators are foundational to programming in R and allow you to
compare two values together to control your programming logic.

Logical operators always return a logical value (TRUE , FALSE , or NA), and are
most commonly
used to subset data (more on this later) and control the flow if
your code if /else statements
(more on this later as well!)

16 / 83

UNIVERSITY OF WASHINGTON

Relational Operators
> and < return TRUE if the left side is greater than (>) or less than (<) the
right side, otherwise they return FALSE

200 > 300

[1] FALSE

300 > 200

[1] TRUE

200 < 300

[1] TRUE

300 < 200

[1] FALSE

17 / 83

UNIVERSITY OF WASHINGTON

>= and <= return TRUE if the left side is greater than or equal to (>=) or less
than or equal to (<=) the right side, otherwise they return FALSE

300 > 200

[1] TRUE

300 >= 300

[1] TRUE

300 <= 200

[1] FALSE

200 <= 300

[1] TRUE

18 / 83

UNIVERSITY OF WASHINGTON

== and != return TRUE if the left side is equal to (==) or not equal to (!=) the
right side, otherwise they return FALSE

200 == 200

[1] TRUE

200 == 300

[1] FALSE

200 != 200

[1] FALSE

200 != 300

[1] TRUE

19 / 83

UNIVERSITY OF WASHINGTON

Comparing strings
You can also use relational operators to compare strings:

"This" == "This"

[1] TRUE

"This" == "That"

[1] FALSE

"This" != "That"

[1] TRUE

Be careful though! These comparisons are case sensitive:

"this" == "THIS"

[1] FALSE
20 / 83

UNIVERSITY OF WASHINGTON

Shouldn't this throw an error?

"UW" > "WSU"

[1] FALSE

R can compare strings in this way,
but this doesn't mean you should!

Things get weird though when you use other relational operators with strings

What does this even mean?!

"A" > 10

[1] TRUE

11 > "10"

[1] TRUE
21 / 83

UNIVERSITY OF WASHINGTON

The & and && ('and', 'and and')
operators are used to compare
whether two (or more) conditions
are TRUE

If both conditions are TRUE , TRUE is
returned, otherwise FALSE (or NA1)
is returned

and, and and

TRUE && TRUE

[1] TRUE

TRUE && FALSE

[1] FALSE

[1] Caution: If one of the terms is NA , && will return NA .

22 / 83

UNIVERSITY OF WASHINGTON

You can combine multiple && to check that all conditions evaluate to TRUE

TRUE && TRUE && T && TRUE

[1] TRUE

TRUE && FALSE && TRUE && FALSE

[1] FALSE

&& is more helpful when we can actually evaluate certain conditions

1 == 2 && 100 == as.numeric("100")

[1] FALSE

50 < 51 && as.logical(1) & is.data.frame(mtcars)

[1] TRUE

23 / 83

UNIVERSITY OF WASHINGTON

Single & versus double &&
The single & performs comparisons on all values.

The double && performs comparisons only until it knows what the outcome
will be.

For example, even though the operation below has to return FALSE (since the
first half is FALSE), it
evaluates the second half anyways (which throws an
error)

exists("nonexistent_object") & nonexistent_object == 1

Using && will properly return FALSE (because it doesn't evaluate the second
half).

exists("nonexistent_object") && nonexistent_object == 1

[1] FALSE

Error in eval(expr, envir, enclos): object 'nonexistent_object' n

24 / 83

UNIVERSITY OF WASHINGTON

When given a vector, & performs comparisons on all elements:

c(TRUE, FALSE, TRUE) & c(TRUE, TRUE, TRUE)

[1] TRUE FALSE TRUE

&& performs comparisons only on the first element:

c(TRUE, FALSE, TRUE) && c(TRUE, TRUE, TRUE)

[1] TRUE

c(FALSE, FALSE, TRUE) && c(TRUE, TRUE, TRUE)

[1] FALSE

Bottom line: When using operators to produce one TRUE /FALSE value, you
most likely want to use &&

25 / 83

UNIVERSITY OF WASHINGTON

or, or or
The | and || ('or', 'or or') operators are used to compare whether one of two
(or more) conditions are TRUE

If one or more conditions TRUE , TRUE is returned, otherwise FALSE (or NA) is
returned.

TRUE || FALSE

[1] TRUE

FALSE || TRUE

[1] TRUE

FALSE || FALSE

[1] FALSE

26 / 83

UNIVERSITY OF WASHINGTON

Similar to the single & and double && , | evaluates all conditions while ||
stops when the first TRUE is reached

So this throws an error:

TRUE | nonexistent_object == 1

But this does not:

TRUE || nonexistent_object == 1

[1] TRUE

You can combine multiple || or evaluate several conditions. For example:

FALSE || 1 == 2 || "This" == "That" || TRUE

[1] TRUE

Error in eval(expr, envir, enclos): object 'nonexistent_object' n

27 / 83

UNIVERSITY OF WASHINGTON

When given a vector, | performs comparisons on all elements:

c(TRUE, FALSE, TRUE) | c(TRUE, TRUE, TRUE)

[1] TRUE TRUE TRUE

|| performs comparisons only on the first element:

c(FALSE, FALSE, TRUE) || c(FALSE, TRUE, TRUE)

[1] FALSE

28 / 83

UNIVERSITY OF WASHINGTON

Also known as the "bang" operator

Converts TRUE into FALSE and FALSE into
TRUE

not!

!TRUE

[1] FALSE

!FALSE

[1] TRUE

Don't actually do this!
!!!!!!!!!FALSE

[1] TRUE

29 / 83

UNIVERSITY OF WASHINGTON

The ! operator is used when you want to check if a condition does not
evaluate to TRUE . For example to make sure something is not numeric:

!is.numeric("ABCD")

[1] TRUE

You can negate anything that returns a logical value

!(1 == 1 && 2 == 2)

[1] FALSE

Function that just returns TRUE when it is called
returnTRUE <- function() return(TRUE)
returnTRUE()

[1] TRUE

!returnTRUE()

[1] FALSE

30 / 83

UNIVERSITY OF WASHINGTON

Type coercion
If a relational or logical operator is passed (i.e., used with) two different atomic
vectors as arguments, R will automatically coerce (i.e., change) one type to the
other.

Coercion occurs in the following (decreasing) order of precedence:

1. Character
2. Complex
3. Numeric
4. Integer
5. Logical
6. Raw

For example, R will coerce this entire vector (which can only be one atomic
type) to character because there is a character inside:

c("Psych548", 548.00, 548, TRUE)

[1] "Psych548" "548" "548" "TRUE"

31 / 83

UNIVERSITY OF WASHINGTON

But if we remove the character, it coerces it to numeric:

c(548.00, 548, TRUE)

[1] 548 548 1

This is why operations we looked at previously technically work:

"A" > 10

[1] TRUE

10 is coerced to "10" and then "A" is compared to it. Letters come before
numbers in R's character comparison.

11 > "10"

[1] TRUE

11 is coerced to "11" and the string "11" is larger than the string "10"

32 / 83

UNIVERSITY OF WASHINGTON

Missing Values
Missing values in R are represented as NA (without quotes)

Even one NA "poisons the well. Your calculations will return NA unless you
handle missing values properly:

mean(vector_with_NAs)

[1] NA

mean(vector_with_NAs,
 na.rm = TRUE)

[1] 3.8

The na.rm argument in mean() removes missing values prior to calculating
the mean.

33 / 83

UNIVERSITY OF WASHINGTON

NA is technically a logical variable...

typeof(NA)

[1] "logical"

But it can be other types as well (we have missing data for characters and
numeric variables too!):

as.numeric(NA)

[1] NA

You can directly tell R which type of NA you want to use:

NA_real_ (double)
NA_integer_ (integer)
NA_character_ (character)

c(NA_character_, 100)

[1] NA "100"

34 / 83

UNIVERSITY OF WASHINGTON

Detecting Missing Values
WARNING: You can't test for missing values by seeing if they are equal to NA
(==NA):

vector_with_NAs == NA

[1] NA NA NA NA NA NA NA

Instead, you need to use the is.na() function:

is.na(vector_with_NAs)

[1] FALSE FALSE TRUE FALSE FALSE TRUE FALSE

And to check that a value is not NA :

!is.na("This is not NA")

[1] TRUE

35 / 83

UNIVERSITY OF WASHINGTON

To check if something is finite or not,
use is.finite() :

is.finite(c(-1, 0, 1) / 0)

[1] FALSE FALSE FALSE

To check if something is not defined,
use is.nan() :

is.nan(c(-1, 0, 1) / 0)

[1] FALSE TRUE FALSE

Inf and NaN
R also has representations for positive and negative infinity (Inf , -Inf) and
undefined values (NaN ; Not a Number):

c(-1, 0, 1) / 0

[1] -Inf NaN Inf

36 / 83

UNIVERSITY OF WASHINGTON

Vectors

37 / 83

UNIVERSITY OF WASHINGTON

Making Vectors
In R, a vector is a set of values that are the same atomic type

We create vectors using the c() function (for 'combine' or 'concatenate'):

c(3, 500, -Inf, -1.23, 24/2*10)

[1] 3.00 500.00 -Inf -1.23 120.00

You can also use : as shorthand to create vectors of series of numbers
(incremented by one):

1:10

[1] 1 2 3 4 5 6 7 8 9 10

-5:5

[1] -5 -4 -3 -2 -1 0 1 2 3 4 5

38 / 83

UNIVERSITY OF WASHINGTON

The following also works but is more unusual to see:

1.5:10.5

[1] 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

You can also create numeric vectors using the seq() (for sequence) function:

seq(from = 1, to = 11, by = 2)

[1] 1 3 5 7 9 11

seq(from = 1, to = 10, length.out = 5)

[1] 1.00 3.25 5.50 7.75 10.00

39 / 83

UNIVERSITY OF WASHINGTON

seq_len will return the same result
as 1:length :

seq_len(4)

[1] 1 2 3 4

seq_along will return a vector of
1:N elements of another vector:

seq_along(5:10)

[1] 1 2 3 4 5 6

You can create vectors of repeated values with rep() :

rep(10, times = 5) # Repeat 10 five times

[1] 10 10 10 10 10

rep(c(TRUE, FALSE), times = 3) # Repeat c(TRUE, FALSE) 3 times

[1] TRUE FALSE TRUE FALSE TRUE FALSE

rep(c("One", "Two"), each = 3) # Repeat each element 3 times

[1] "One" "One" "One" "Two" "Two" "Two"

40 / 83

UNIVERSITY OF WASHINGTON

Vectors are one-dimensional (length) by definition:

length(c(90, -0.5, 2, Inf))

[1] 4

Nested calls to c() are flattened:

length(c(1, c(2, 3, 4, c(5, 6, 7, 8))))

[1] 8

If all elements of a vector are not the same type, R will coerce the vector into
one type1:

c("One", 1, TRUE)

[1] "One" "1" "TRUE"

[1] This is the source of many bugs, so be careful with this!

41 / 83

UNIVERSITY OF WASHINGTON

Vector Math
When doing arithmetic operations with vectors, R handles these elementwise:

1*4, 2*5, 3*6
c(1, 2, 3) * c(4, 5, 6)

[1] 4 10 18

1^4, 2^4, 3^4, 4^4
c(1, 2, 3, 4)^4

[1] 1 16 81 256

Other common operations on numeric vectors:

+ , - , / , exp()= , log() = e
x log

e
(x)

42 / 83

UNIVERSITY OF WASHINGTON

Vector Recyling
If you do math of vectors with different lengths, R will recycle the shorter one
by repeating it until it matches the length of the longer one. For example:

1*1, 2*2, 1*3, 2*4
c(1, 2) * c(1, 2, 3, 4)

[1] 1 4 3 8

Same exact operation as above
c(1, 2, 1, 2) * c(1, 2, 3, 4)

[1] 1 4 3 8

You can recycle with a scalar (a single number) as well:

1+1, 1+2, 1+3
1 + c(1, 2, 3)

[1] 2 3 4

43 / 83

UNIVERSITY OF WASHINGTON

Warning on Recycling
R will warn you if you do math with vectors of incommensurate lengths (but it
will not throw an error!):

1+1, 2+2, 3+3, 1+4
c(1, 2, 3) + c(1, 2, 3, 4)

[1] 2 4 6 5

Warning in c(1, 2, 3) + c(1, 2, 3, 4): longer object length is no
shorter object length

44 / 83

UNIVERSITY OF WASHINGTON

Vectorwise Math
Some functions operate on the entire vector and return one number (rather
than operating elementwise):

sum(1:5)

[1] 15

max(c(1, 4, 10:999))

[1] 999

Other vectorwise summary functions include:

min() , mean() , median() , sd() , var()

45 / 83

UNIVERSITY OF WASHINGTON

Example: Standardizing Data
You can combine elementwise and vectorwise math to perform your
calculations. For example, if you want to standardize a vector of values (e.g.,
scores on a beahvioral tasks):

scores <- c(30, 28, 47, 27, 97, 49, 84, 78, 33, 48)
z <- (scores - mean(scores)) / sd(scores)
round(z, 2)

[1] -0.87 -0.95 -0.20 -0.99 1.77 -0.12 1.25 1.02 -0.75 -0.16

You can also use the built-in scale() function to do this for you:

identical(z, as.vector(scale(scores)))

[1] TRUE

zi =
xi − mean(x)

SD(x)

46 / 83

UNIVERSITY OF WASHINGTON

Logical Vectors are Special!
A logical vector is a vector filled with TRUE and FALSE values

Typically logical vectors are created programmatically as a result of logical
tests (e.g., course == "Psych548"). For example, if you want to check
whether a group of people are old enough to purchase alcohol:

ages <- c(13, 43, 72, 24, 21, 20, 40, 15, 29)
ages >= 21

[1] FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE

Logical vectors are most useful when you want to take a subset of a vector (or
other data type). Only ages 21+ are selected:

ages[ages >= 21]

[1] 43 72 24 21 40 29

47 / 83

UNIVERSITY OF WASHINGTON

You can pass a single index (scalar)
or vector of values to keep:

faculty[c(4, 5)]

[1] "Mary" "Jane"

You can pass a single index or vector
or values to drop:

faculty[-c(1, 3:5)]

[1] "Angela" "Lori"

Subsetting Vectors
There are many ways to subset a vector. You will primarily use [and] to
specify a subset of a vector, however you can also use the subset() function.

Adult clinical core faculty
faculty <- c("Corey", "Angela", "Bill", "Mary", "Jane", "Lori")

You can also pass a logical vector(TRUE to keep, FALSE to drop):

faculty[c(T, F, T, F, F, T)]

[1] "Corey" "Bill" "Lori"

48 / 83

UNIVERSITY OF WASHINGTON

Using logical vectors to subset other vectors is incredibly useful

For example, what if the order of the names changed, but you wanted to keep
Mary and Jane?

faculty == "Mary" | faculty == "Jane"

[1] FALSE FALSE FALSE TRUE TRUE FALSE

faculty[faculty == "Mary" | faculty == "Jane"]

[1] "Mary" "Jane"

Or maybe you want to know which faculty have at least 1 grad student1:

How many grad students does each faculty have?
gradstudents <- c(1, 0, 4, 3, 2, 3)
faculty[gradstudents > 1]

[1] "Bill" "Mary" "Jane" "Lori"

49 / 83

UNIVERSITY OF WASHINGTON

The subset() function can also be used to subset vectors:

subset(faculty, gradstudents > 1)

[1] "Bill" "Mary" "Jane" "Lori"

When subsetting vectors, the only difference between [] and subset() is
that subset() removes NAs

myvector <- 1:5
myvector[c(T, T, F, NA, T)]

[1] 1 2 NA 5

subset(myvector, c(T, T, F, NA, T))

[1] 1 2 5

myvector[c(T, T, F, NA, T) & !is.na(c(T, T, F, NA, T))]

[1] 1 2 5

50 / 83

UNIVERSITY OF WASHINGTON

Named vectors
You can assign names to the elements of a vector using the names() function:

names(gradstudents) <- faculty
print(gradstudents)

Corey Angela Bill Mary Jane Lori
1 0 4 3 2 3

☝️ The elements of this vector are still numeric!

Names are a useful way of subsetting your data and do not depend on the
order of the vector:

gradstudents[c("Mary", "Jane")]

Mary Jane
3 2

51 / 83

UNIVERSITY OF WASHINGTON

Helpful Logical/Subsetting Functions

%in% allows you to avoid typing a lot of OR (|) statements out:

Same as: faculty == "Mary" | faculty == "Jane"
faculty %in% c("Mary", "Jane")

[1] FALSE FALSE FALSE TRUE TRUE FALSE

!faculty %in% c("Mary", "Jane") # Faculty not Mary and Jane

[1] TRUE TRUE TRUE FALSE FALSE TRUE

which() gives you the indices (locations) of TRUE values in a logical vector:

which(faculty %in% c("Mary", "Jane"))

[1] 4 5

52 / 83

UNIVERSITY OF WASHINGTON

Matrices

53 / 83

UNIVERSITY OF WASHINGTON

Making Matrices
Matrices are basically two dimensional vectors with rows and columns and
are made with the matrix() function

LETTERS is a built-in vector in R w/ elements A-Z
matrix(LETTERS[1:6], nrow = 2, ncol = 3)

[,1] [,2] [,3]
[1,] "A" "C" "E"
[2,] "B" "D" "F"

The byrow argument (defaults to FALSE) determines whether the data fills the
matrix by row (TRUE) or by column (FALSE):

matrix(LETTERS[1:6], nrow = 2, ncol = 3, byrow = T)

[,1] [,2] [,3]
[1,] "A" "B" "C"
[2,] "D" "E" "F"

54 / 83

UNIVERSITY OF WASHINGTON

rbind(1:3, 4:6, 7:9)

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9

cbind(1:3, 4:6, 7:9)

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

You can also make matrices by binding vectors together with rbind() (row
bind) and cbind() (column bind):

Let's make a matrix to practice subsetting on the next slide!

letters_matrix <- matrix(letters[1:6], nrow = 2,
 ncol = 3, byrow = T)
print(letters_matrix)

[,1] [,2] [,3]
[1,] "a" "b" "c"
[2,] "d" "e" "f"

55 / 83

UNIVERSITY OF WASHINGTON

Row 2, Column 3
letters_matrix[2, 3]

[1] "f"

Row 1, Columns 2 and 3
letters_matrix[1, c(2, 3)]

[1] "b" "c"

All rows, column 1
letters_matrix[, 1]

[1] "a" "d"

Row 2, all columns
letters_matrix[2,]

[1] "d" "e" "f"

Subsetting Matrices
Matrices are subset wtih [rows, colums]

If you want to keep the entire row or column, keep the space inside the square
braces ([]) blank:

56 / 83

UNIVERSITY OF WASHINGTON

All rows, column 1
letters_matrix[2,]

[1] "d" "e" "f"

Row 2, all columns
letters_matrix[2, , drop = F]

[,1] [,2] [,3]
[1,] "d" "e" "f"

Matrices -> Vectors
When a matrix is subsetted to just 1 row/column of data (like we saw in the
previous slide), R will automatically convert it to a vector. You tell R not to do
this by using drop = FALSE :

To get the dimensions of a matrix, use dim()

Returns vector of length 2: c(rows, columns)
dim(letters_matrix)

[1] 2 3

57 / 83

UNIVERSITY OF WASHINGTON

Matrix Atomic Type Warning
Like vectors, all elements of a matrix must be the same atomic type. If they are
not, R will automatically coerce the matrix according to the rules discussed
earlier (character > complex > numeric > integer > logical > raw)

cbind(1:2, c("UW", "WSU"))

[,1] [,2]
[1,] "1" "UW"
[2,] "2" "WSU"

58 / 83

UNIVERSITY OF WASHINGTON

Named Matrices
You can assign names to rows (rownames()) and columns (colnames()) of a
matrix:

mymatrix <- matrix(1:6, nrow = 2)
rownames(mymatrix) <- c("Odds", "Evens")
colnames(mymatrix) <- c("First", "Second", "Third")
print(mymatrix)

First Second Third
Odds 1 3 5
Evens 2 4 6

You can then subset the matrix by the dimension names:

mymatrix["Evens", c("First", "Third"), drop = F]

First Third
Evens 2 6

59 / 83

UNIVERSITY OF WASHINGTON

mat1 <- matrix(1:6, ncol = 3)
print(mat1)

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6

mat1 / mat2

[,1] [,2] [,3]
[1,] 1.0 1.5 1.666667
[2,] 0.5 0.8 1.000000

mat1 * mat2

[,1] [,2] [,3]
[1,] 1 6 15
[2,] 8 20 36

Matrix Math
If two matrices have the same dimensions, math can be formed elementwise.
For example:

mat2 <- matrix(1:6, ncol = 3, by
print(mat2)

60 / 83

UNIVERSITY OF WASHINGTON

Matrix Transposition and

Multiplication
To transpose a matrix, use t() :

mat1t <- t(mat1)
print(mat1t)

[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6

To do actual matrix multiplication (not elementwise), use %*% :

mat1 %*% mat1t

[,1] [,2]
[1,] 35 44
[2,] 44 56

61 / 83

UNIVERSITY OF WASHINGTON

Matrix Inversion
To invert an invertible square matrix, use solve() :

mat4 <- mat1 %*% mat1t
mat4i <- solve(mat4)
print(mat4i)

[,1] [,2]
[1,] 2.333333 -1.833333
[2,] -1.833333 1.458333

mat4 %*% mat4i

[,1] [,2]
[1,] 1.000000e+00 -2.664535e-15
[2,] 1.776357e-14 1.000000e+00

Note the floating point imprecision: The off-diagonals are very close to zero
rather than actually zero!

62 / 83

https://floating-point-gui.de/basic/

UNIVERSITY OF WASHINGTON

Diagonal Matrices
To extract the diagonal of a matrix or make a diagonal matrix (usually the
identity matrix), use diag() :

varcov_mtcars <- cov(mtcars[, 1:3])
print(varcov_mtcars)

mpg cyl disp
mpg 36.324103 -9.172379 -633.0972
cyl -9.172379 3.189516 199.6603
disp -633.097208 199.660282 15360.7998

Get the variances of the first 3 variables in mtcars :

diag(varcov_mtcars)

mpg cyl disp
36.324103 3.189516 15360.799829

63 / 83

UNIVERSITY OF WASHINGTON

You can also use diag() to make an identity matrix of size n:

diag(2)

[,1] [,2]
[1,] 1 0
[2,] 0 1

diag(3)

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

diag(4)

[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 0 0 1 0
[4,] 0 0 0 1

64 / 83

UNIVERSITY OF WASHINGTON

Lists

65 / 83

UNIVERSITY OF WASHINGTON

Lists are objects that can store multiple types of data and are created with
list()

mylist <- list("groceries" = c("Soy Sauce", "Rice", "Tofu"),
 "numbers" = 1:7,
 "mydata" = matrix(8:11, nrow = 2),
 "linearmod" = lm(mpg ~ disp, data = mtcars))
print(mylist)

$groceries
[1] "Soy Sauce" "Rice" "Tofu"

$numbers
[1] 1 2 3 4 5 6 7

$mydata
[,1] [,2]
[1,] 8 10
[2,] 9 11

$linearmod

Call:
lm(formula = mpg ~ disp, data = mtcars)

Coefficients:
(Intercept) disp
29.59985 -0.04122

66 / 83

UNIVERSITY OF WASHINGTON

Accessing List Elements
You can access a list element by its name or number in [[]] (note the double
square brackets) or $ followed by its name:

mylist[[1]]

[1] "Soy Sauce" "Rice" "Tofu"

mylist[["groceries"]]

[1] "Soy Sauce" "Rice" "Tofu"

mylist$groceries

[1] "Soy Sauce" "Rice" "Tofu"

67 / 83

UNIVERSITY OF WASHINGTON

Why two brackets [[]]?
Single brackets return a list

Double brackets return the actual list element as whatever data type it is
stored as:

typeof(mylist[1])

[1] "list"

typeof(mylist[[1]])

[1] "character"

68 / 83

UNIVERSITY OF WASHINGTON

[] versus [[]]

[x] chooses elements but keeps the list while [[x]] extracts the element
from the list

Source: Hadley Wickham

69 / 83

https://twitter.com/hadleywickham/status/643381054758363136?lang=en

UNIVERSITY OF WASHINGTON

Regression Output is a List!
Display only the first 7 elements
str(mylist$linearmod, list.len = 7)

List of 12
$ coefficients : Named num [1:2] 29.5999 -0.0412
..- attr(*, "names")= chr [1:2] "(Intercept)" "disp"
$ residuals : Named num [1:32] -2.01 -2.01 -2.35 2.43 3.94 ...
..- attr(*, "names")= chr [1:32] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" "Hornet 4 Drive
$ effects : Named num [1:32] -113.65 -28.44 -1.79 2.65 3.92 ...
..- attr(*, "names")= chr [1:32] "(Intercept)" "disp" "" "" ...
$ rank : int 2
$ fitted.values: Named num [1:32] 23 23 25.1 19 14.8 ...
..- attr(*, "names")= chr [1:32] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" "Hornet 4 Drive
$ assign : int [1:2] 0 1
$ qr :List of 5
..$ qr : num [1:32, 1:2] -5.657 0.177 0.177 0.177 0.177 ...
.. ..- attr(*, "dimnames")=List of 2
..$: chr [1:32] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" "Hornet 4 Drive" ...
..$: chr [1:2] "(Intercept)" "disp"
.. ..- attr(*, "assign")= int [1:2] 0 1
..$ qraux: num [1:2] 1.18 1.09
..$ pivot: int [1:2] 1 2
..$ tol : num 1e-07
..$ rank : int 2
..- attr(*, "class")= chr "qr"
[list output truncated]
- attr(*, "class")= chr "lm"

70 / 83

UNIVERSITY OF WASHINGTON

Named Lists
Lists can be unnamed:

unnamed_list <- list(c("Apples", "Bananas", "Oranges"),
 1:10,
 diag(3))
print(unnamed_list)

[[1]]
[1] "Apples" "Bananas" "Oranges"

[[2]]
[1] 1 2 3 4 5 6 7 8 9 10

[[3]]
[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

71 / 83

UNIVERSITY OF WASHINGTON

You can use names() to access the names of a named list and to assign names
to an unnamed list:

names(mylist)

[1] "groceries" "numbers" "mydata" "linearmod"

names(unnamed_list) <- c("Fruit", "Numbers", "Identity Matrix")
print(unnamed_list)

$Fruit
[1] "Apples" "Bananas" "Oranges"

$Numbers
[1] 1 2 3 4 5 6 7 8 9 10

$`Identity Matrix`
[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

72 / 83

UNIVERSITY OF WASHINGTON

Dataframes

73 / 83

UNIVERSITY OF WASHINGTON

Dataframes are a special type of list where all elements of the list are the
same length and are bound together

Unlike matrices, dataframes can hold data of different atomic types (but each
column needs to be the same type)

To construct a dataframe from scratch, use the data.frame() function:

name grads fullprof
1 Corey 1 FALSE
2 Angela 0 FALSE
3 Bill 4 TRUE
4 Mary 3 TRUE
5 Jane 2 TRUE
6 Lori 3 TRUE

uwclinpsych <- data.frame("name" = c("Corey", "Angela", "Bill", "Mar
 "grads" = c(1, 0, 4, 3, 2, 3),
 "fullprof" = c(F, F, T, T, T, T))
print(uwclinpsych)

74 / 83

UNIVERSITY OF WASHINGTON

You can also create dataframes using rbind() and cbind() , but unless you
are binding two dataframes together, it will return a matrix:

cbind("name" = c("Corey", "Angela", "Bill", "Mary", "Jane", "Lori"),
 "grads" = c(1, 0, 4, 3, 2, 3),
 "fullprof" = c(F, F, T, T, T, T))

name grads fullprof
[1,] "Corey" "1" "FALSE"
[2,] "Angela" "0" "FALSE"
[3,] "Bill" "4" "TRUE"
[4,] "Mary" "3" "TRUE"
[5,] "Jane" "2" "TRUE"
[6,] "Lori" "3" "TRUE"

--

rbind(uwclinpsych[4:6,], uwclinpsych[1:3,])

name grads fullprof
4 Mary 3 TRUE
5 Jane 2 TRUE
6 Lori 3 TRUE
1 Corey 1 FALSE
2 Angela 0 FALSE
3 Bill 4 TRUE

75 / 83

UNIVERSITY OF WASHINGTON

Subsetting Dataframes
Dataframes are subset in the same way as matrices([rows, columns])

uwclinpsych[, 1]

[1] "Corey" "Angela" "Bill" "Mary" "Jane" "Lori"

uwclinpsych[, "name"]

[1] "Corey" "Angela" "Bill" "Mary" "Jane" "Lori"

uwclinpsych[c(1, 3, 5),]

name grads fullprof
1 Corey 1 FALSE
3 Bill 4 TRUE
5 Jane 2 TRUE

76 / 83

UNIVERSITY OF WASHINGTON

You can also use the $ operator to target a single column

uwclinpsych$name

[1] "Corey" "Angela" "Bill" "Mary" "Jane" "Lori"

When you have data that are related to each other and it is possible to store
them as a dataframe, you should! This allows you to confidently make subsets
for your analyses:

uwclinpsych[uwclinpsych$grads > 2, "name"]

[1] "Bill" "Mary" "Lori"

👇 same return value

uwclinpsych$name[uwclinpsych$grads > 2]

[1] "Bill" "Mary" "Lori"

77 / 83

UNIVERSITY OF WASHINGTON

uwclinpsych$name[uwclinpsych$grads > 2 &
 uwclinpsych$fullprof]

☝️ What is this code doing?

[1] "Bill" "Mary" "Lori"

If you want to subset one column of a dataframe while keeping it as a
dataframe object, use drop=FALSE :

uwclinpsych[, 1]

[1] "Corey" "Angela" "Bill" "Mary" "Jane" "Lori"

uwclinpsych[, 1, drop = FALSE]

name
1 Corey
2 Angela
3 Bill
4 Mary
5 Jane
6 Lori

78 / 83

UNIVERSITY OF WASHINGTON

To view the first n rows of a
dataframe use head() (defaults to 5
rows):

head(uwclinpsych, 3)

name grads fullprof
1 Corey 1 FALSE
2 Angela 0 FALSE
3 Bill 4 TRUE

To view the last n rows of a
dataframe use tail() (defaults to 5
rows):

tail(uwclinpsych, 4)

name grads fullprof
3 Bill 4 TRUE
4 Mary 3 TRUE
5 Jane 2 TRUE
6 Lori 3 TRUE

Viewing Dataframes
You can view an entire dataframe by print() ing it out in the console.1

However, it often just spams your console and is too large to meaningfully
read.

[1] You can also type the name of the dataframe without print() and R will print it!

79 / 83

UNIVERSITY OF WASHINGTON

You can also View() a more friendly pop-up of your data and, in RStudio,
filter and sort as you view

View(swiss)

80 / 83

UNIVERSITY OF WASHINGTON

Attributes
Objects in R can have attributes, which are basically metadata that describe
an object. To get an object's attributes, use the attributes() function.

This can help give you an overview of an object's properties. For example:

Linear regression w/ one predictor
linearmod <- lm(mpg ~ disp, data = mtcars)
attributes(linearmod)

$names
[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual
[9] "xlevels" "call" "terms" "model"

$class
[1] "lm"

81 / 83

UNIVERSITY OF WASHINGTON

print(dat)

pid txm phq pcl
1 1001 1 10 3
2 1002 2 17 28
3 1003 3 3 43
4 1004 1 25 17

🤔 what is pid?

🤔 what is txm?

🤔 what is phq?

🤔 what is pcl?

Attributes also offer a nice way to document a dataframe

Consider the following data:

We can assign attributes to each column to document what each is:

attr(dat$pid, "Label") <- "Participant ID"
attr(dat$txm, "Label") <- "Treatment Modality"
attr(dat$phq, "Label") <- "Depression (measured by PHQ-9)"
attr(dat$pcl, "Label") <- "PTSD Sx (measured by PCL-5)"

Columns can have as many attributes as you would like!
attr(dat$txm, "Values") <- c("1" = "CPT", "2" = "PE", "3" = "TAU")

82 / 83

UNIVERSITY OF WASHINGTON

You and your collaborators can then reference these attributes

attributes(dat)

$names
[1] "pid" "txm" "phq" "pcl"

$row.names
[1] 1 2 3 4

$class
[1] "data.frame"

attributes(dat$txm)

$Label
[1] "Treatment Modality"

$Values
1 2 3
"CPT" "PE" "TAU"

83 / 83

