
UNIVERISTY OF WASHINGTON

R, RStudio, and R Markdown
Adam Kuczynski

UNIVERISTY OF WASHINGTON

Course Objectives
Overarching goal: to develop a foundational knowledge in R

You will:

Learn basic programming skills

Develop data management and visualization skills in R

Learn how to manipulate and analyze data in R

Be prepared to master programming tasks you encounter in your
coursework and research

2 / 46

UNIVERISTY OF WASHINGTON

Required Software
R (Version 4.1+)
RStudio (Version 1.4+)

R is the programming language
Comes with its own GUI on Windows and Mac, but it's not great!

RStudio is software to help you efficiently write R code
Called an integrated development environment (IDE)

3 / 46

https://cloud.r-project.org/
https://www.rstudio.com/products/rstudio/download/

UNIVERISTY OF WASHINGTON

Course Structure
Lecture

Every Tuesday
Focus on covering foundational knowledge in R
Please ask questions throughout lecture!

Lab

Every Thursday
Focus on implementing the R skills covered in lecture
Sometimes I will cover additional material in lab
Mostly a space to work with each other on novel programming tasks,
homework, and to get your questions answered

Assignments

Weekly (due on Tuesdays before class)
Designed to be challenging (depending on your experience, expect a to
spend a couple of hours each week on HW)

4 / 46

UNIVERISTY OF WASHINGTON

A note about assignments
My hope is that these assignments will prepare you as much as possible for the
"real world"
of statistical computing. In approaching data tasks, it is often
helpful to have examples of code that you have written in the past to perform
a similar task. These assignments will likely function in that way. However, if
you are facing a task "in real life" that is similar to a homework question (e.g.,
creating the same/similar figure for your manuscript), please get in touch with
me and we can figure out a way to work that into your weekly assignment
instead.

5 / 46

UNIVERISTY OF WASHINGTON

Logistics
Location

Lecture: Zoom (932 9410 5848) on Tuesdays, 1:10-2:40pm
Lab: Zoom (932 9410 5848) on Thursdays, 1:10-2:40pm
Office Hours: by appointment
Slack: click to join

Materials: on the course Canvas page

Grading

6 / 46

https://washington.zoom.us/j/93294105848
https://washington.zoom.us/j/848704242
https://join.slack.com/t/psych548intro-e273612/shared_invite/zt-sb389mls-M7ZqvDECBLD9GEbjOHGB6g

UNIVERISTY OF WASHINGTON

Getting help in Slack
I'll monitor it as much as I can, but it's even better if you help each other!
Put single lines of code between backticks (same key as '~')
Put multiple lines of code after 3 backticks to create a code chunk. This
makes it much easier to read and copy & paste your code
Describe your problem clearly, including what you have tried already
Include all the code that is needed to respond to your question

Don't ask questions like this:

I tried lm(y~x) but it isn't working, how do I fix it?

7 / 46

UNIVERISTY OF WASHINGTON

Getting help in Slack
Instead, ask like this:

y <- seq(1:10) + rnorm(10)
x <- seq(0:10)
model <- lm(y ~ x)

Running the code above gives me the following error. Anyone know whats
going on?

Error in model.frame.default(formula = y ~ x,

drop.unused.levels = TRUE) : variable lengths differ

(found for 'x')

8 / 46

UNIVERISTY OF WASHINGTON

Lecture Plan
1. R, Rstudio, Rmarkdown, and Packages

2. Fundamentals of R

3. Control structures (if /else , switch , for , while , repeat , break ,
next), classes and methods, and vectorization

4. Functions, user-defined functions, and the apply family of functions

5. Importing/exporting data, data cleaning, working with strings (regular
expressions)

6. Data manupulation and summarizing

7. Data visualization in base R

8. Data visualization in ggplot2

9. Intro to statistical computing in R (formulas, functions, and packages) and
writing reproducible code (git, renv)

9 / 46

UNIVERISTY OF WASHINGTON

Slide Formatting
Code represents R code you type into the editor or console, for example: "you
can use the mean() function to find the average of a vector of numbers.
Sometimes median() is a better summary, though."

Code chunks that span the page represent actual R code embedded in the slides.

Sometimes important lines of code will be highlighted!
10*9

[1] 90

The lines preceded by ## represent the output, or result, of running the code
in the code chunk

10 / 46

UNIVERISTY OF WASHINGTON

R and RStudio

11 / 46

UNIVERISTY OF WASHINGTON

Why R?
R is a programming language built for statistical computing

Why use R if you are already familiar with other statistical software?

R is free, so you don't need to connect to a terminal server or shell out tons
of money
R has a very large community, so there are tons of packages and it's easy
to find help
R is a programming language, so you can do almost anything you want
with it (you don't have to rely on whatever is implemented in the software
you use)
R can handle almost any data format
R makes it easy to create reproducible analysis
R is increasingly becoming the norm in psychological science
Find a job! R skills transfer well to other programming languages, and
many stats-related jobs require proficiency in R

12 / 46

UNIVERISTY OF WASHINGTON

R Studio
R Studio is an integrated development environment (IDE) for R that will
make your life much easier

Features of RStudio include:

Auto-complete code, format code, and highlight syntax
Organize your code, output, plots, and objects into one window
View data and objects in readable and searchable format
Seamless creation of RMarkdown documents

RStudio can also...

Interact with git and github
Run interactive tutorials
Help you write in other languages like python, javascript, C++, and more!

13 / 46

UNIVERISTY OF WASHINGTON

Getting Started
To make your RStudio look like mine...

1. Tools > Global Options > Pane Layout and make top right your Console
2. Tools > Global Options > Appearance and select Chaos as your Editor theme
3. Tools > Global Options > Code > Display and select:

Highlight selected line
Allow scroll past end of document
Highlight R function calls

Open up RStudio now and choose File > New File > R Script.

Then, let's get oriented with the interface:

Top left: Code editor pane, data viewer (browse with tabs)
Top right: Console for running code (> prompt)
Bottom left: List of objects in environment, code history tab.
Bottom right: Browsing files, viewing plots, managing packages, and
viewing help files.

14 / 46

UNIVERISTY OF WASHINGTON

Editing and Running Code
There are several ways to run R code in RStudio:

Highlight lines in the editor window and click Run at the top or hit Ctrl +
Enter or ⌘ + Enter to run them all

You can change these (other other hot keys) in Tools > Global Options
> Code > Modify Keyboard Shortcuts

With your cursor on a line you want to run, hit Ctrl + Enter or ⌘ + Enter .
Your cursor moves to the next line, so you can run code sequentially with
repeated presses
Type individual lines in the console and press Enter
In R Markdown documents, click within a code chunk and click the green
arrow to run the chunk. The button beside that runs all prior chunks.

You can also type Ctrl + Shift + Enter when your cursor is inside a
code chunk to run just that chunk.

The console will show the lines you ran followed by any printed output.

15 / 46

UNIVERISTY OF WASHINGTON

Incomplete Code
If you try to run incomplete code (e.g. leave off a parenthesis), R might show a
+ sign prompting you to finish the command:

> (11-2
+

Finish the command by typing) and hitting Enter or hit Esc to cancel code
execution

16 / 46

UNIVERISTY OF WASHINGTON

2^2

[1] 4

4 %% 2

[1] 0

2**2

[1] 4

5 %% 2

[1] 1

Arithmetic operations in R
There are several arithmetic operators in R that are extremely useful:

+ addition, - subtraction, * multiplication, / division
^ (less commonly **) exponentiation
%*% matrix multiplication
%/% integer division (9 %/% 2 is 4)
%% modulo (returns the remainder of the left number divided by the right)

e.g., To check that a number is even, you can do number %% 2 . If the return value
is 0 it is even, otherwise it is odd.

17 / 46

UNIVERISTY OF WASHINGTON

Now in your blank R document in the editor, typing the line sqrt(25) and
either clicking Run or hitting
 Ctrl + Enter or ⌘ + Enter .

sqrt(25)

[1] 5

R uses the PEMDAS order of operations:

2*3 then / 2 then + 25
25 + 2 * 3 / 2

[1] 28

You can tell R to evaluate chunks of the equation together by using
parentheses:

25 + 2 then *3 then /2
(25 + 2) * 3 / 2

[1] 40.5

18 / 46

UNIVERISTY OF WASHINGTON

Functions and Help
sqrt() is an example of a function in R.

If we didn't have a good guess as to what sqrt() will do, we can type ?sqrt
in the console (help(sqrt) will also work)
and look at the Help panel on the
bottom right.

?sqrt

Arguments are the inputs to a function. In this case, the only argument to
sqrt()
is x which can be a number or a vector of numbers.

Help files provide documentation on how to use functions and what output
functions produce

19 / 46

UNIVERISTY OF WASHINGTON

Creating Objects
R stores everything as an object, including data, functions, models, and
output.

Creating an object can be done using the assignment operator: <-

luckynumber <- 13

Operators like <- are functions that look like symbols but typically sit
between their arguments (e.g. numbers or objects) instead of having them
inside () like in sqrt(x)

We can actually call operators like other functions by placing them between
backticks:

`<-`(luckynumber, 100)
print(luckynumber)

[1] 100

20 / 46

UNIVERISTY OF WASHINGTON

1 + 5
`+`(1, 5)

[1] 6

5 %% 2

[1] 1

`%%`(5, 2)

[1] 1

You can even create your own operators (we'll get back to this in Week 4)

500 %largerthan% 50

Yes, 500 is larger than 50

50 %largerthan% 500

No, 50 is not larger than 500

21 / 46

UNIVERISTY OF WASHINGTON

Calling Objects
You can call (i.e., use) an object simply by using its name:

luckynumber <- 13
luckynumber + 1

[1] 14

Object names should include letters, numbers, and underscores. They can include other
characters (even spaces) if you surround the object
name in backticks, but this is considered
poor style and will likely lead to errors.

Object names have to start with a letter (unless surrounded by backticks)

Good

myobject <- "My New Object!"

Bad

1stobjectever! <- "My first object ever!"

22 / 46

UNIVERISTY OF WASHINGTON

Overwriting Objects
If you name an object the same name as an existing object, it will overwrite it:

age <- 30
print(age)

[1] 30

age <- 40
print(age)

[1] 40

23 / 46

UNIVERISTY OF WASHINGTON

You can create a copy of the object by assigning it a new name

object1 <- 100
object2 <- object1
print(object1)

[1] 100

print(object2)

[1] 100

This does not clone the object (i.e., changing one does not change the other)

object2 <- object2 + 1
print(object1)

[1] 100

print(object2)

[1] 101

24 / 46

UNIVERISTY OF WASHINGTON

Creating Vectors
A vector is a series of elements, such as numbers.

You can create a vector and store it as an object in the same way as we just
did. To do this, use the
function c() which stands for "combine"

myvector <- c(4, 9, 16, 25, 36)
print(myvector)

[1] 4 9 16 25 36

You can provide a vector as an argument for many functions (more on this
later in the course)

mean(myvector)

[1] 18

25 / 46

UNIVERISTY OF WASHINGTON

More Complex Objects
The same principles can be used to create more complex objects like
matrices, arrays, lists, and dataframes (lists which look like matrices but can
hold multiple data types at once).

Most data sets you will work with will be read into R and stored as a
dataframe, so this course will mainly focus on manipulating and visualizing
these objects.

Before we get into these, let's revisit R Markdown.

26 / 46

UNIVERISTY OF WASHINGTON

R Markdown

27 / 46

UNIVERISTY OF WASHINGTON

R Markdown
Markdown is a simple language for creating formatted text using a plain-text
editor. Markdown can be
compiled (i.e., translated into) into several formats
including HTML, PDF, and Word Docs!

R Markdown is an extension of regular vanilla markdown that allows you to
embed R code and output
inside your document

28 / 46

UNIVERISTY OF WASHINGTON

R Markdown Documents
To create a R Markdown file (.Rmd):

1. Choose File > New File > R Markdown...
2. Make sure HTML Output is selected and click OK
3. Save the file somewhere, call it my_first_markdown.Rmd
4. Click the Knit HTML button
5. Knitting progress is displayed in the R Markdown pane at the top right

You may also open up the file in your computer's browser if you so desire,
using the Open in Browser button at the top of the preview window.

29 / 46

UNIVERISTY OF WASHINGTON

R Markdown Headers
The header of an .Rmd file is a YAML (YAML Ain't Markup Language) code
block, and everything else is part of the main document.

title: "Untitled"
author: "Adam Kuczynski"
date: "June 21, 2021"
output: html_document

To control global output, you can modify the header1.

output:
 html_document:
 theme: darkly

[1] YAML is space-sensitive! Newlines and indents matter!

30 / 46

http://yaml.org/
http://rmarkdown.rstudio.com/html_document_format.html

UNIVERISTY OF WASHINGTON

Output
bold/strong emphasis

italic/normal emphasis

Header

Subheader

Subsubheader

Block quote from
famous
person

Syntax
bold/strong emphasis

italic/normal emphasis

Header

Subheader

Subsubheader

> Block quote from

> famous person

R Markdown Syntax

31 / 46

UNIVERISTY OF WASHINGTON

Output
1. Ordered lists
2. Second item

1. With sublists
2. Second subitem

Unordered lists
Are simple!

Even with subitems

UW Website

Syntax

R Markdown Syntax

1. Ordered lists

2. Second item

 1. With sublists

 2. Second subitem

- Unordered lists

- Are simple!

 - Even with subitems

[UW Website](http://www.uw.edu

![UW Logo](http://depts.washin

32 / 46

http://www.uw.edu/

UNIVERISTY OF WASHINGTON

Output

You can put some math in your

document

Or a sentence with code-looking font .

Or a block of code:

y <- 1:5
z <- y^2

Syntax

Formulae and Syntax

You can put some math $y= \left(

\frac{2}{3} \right)^2$ in you docum

`$$\bar{x}_n=\frac{1}{n}\sum_{i=1}^
x_i$$`

Or a sentence with `code-looking fo

Or a block of code:


    ```r

    y <- 1:5

    z <- y^2

    ```


y = ()
2

2

3

x̄ =

n

∑
i=1

xi

1

n

33 / 46

UNIVERISTY OF WASHINGTON

R Markdown Tinkering
R Markdown documents can be modified in many ways. Visit these links for
more information:

Ways to modify the overall document appearance
Ways to format parts of your document
R Markdown: The Definitive Guide

34 / 46

http://rmarkdown.rstudio.com/html_document_format.html
http://rmarkdown.rstudio.com/authoring_basics.html
https://bookdown.org/yihui/rmarkdown/

UNIVERISTY OF WASHINGTON

R Code in R Markdown
Inside RMarkdown, lines of R code are called chunks. Code is placed between sets of three
backticks and {r} .

This chunk of code:

```{r}
summary(cars)
```

Produces this output in your document:

summary(cars)

speed dist
Min. : 4.0 Min. : 2.00
1st Qu.:12.0 1st Qu.: 26.00
Median :15.0 Median : 36.00
Mean :15.4 Mean : 42.98
3rd Qu.:19.0 3rd Qu.: 56.00
Max. :25.0 Max. :120.00

35 / 46

UNIVERISTY OF WASHINGTON

Chunk Options
Chunks have options that control what happens with their code, such as:

echo=FALSE : Keeps R code from being shown in the document
eval=FALSE : Shows R code in the document without evaluating it
include=FALSE : Hides all output but still runs code (good for setup
chunks where you load packages!)
results='hide' : Hides R's (non-plot) output from the document
cache=TRUE : Saves results of running that chunk so if it takes a while,
you won't have to re-run it each time you re-knit the document
fig.height=5, fig.width=5 : modify the dimensions of any plots that
are generated in the chunk (units are in inches)

Some of these can be modified using the gear-shaped Modify Chunk Options
button in each chunk. There are a lot of other options, however.

36 / 46

https://yihui.name/knitr/options/

UNIVERISTY OF WASHINGTON

Chunk Options and Naming
Try adding or changing the chunk options (separated by commas) for the two
chunks in my_first_markdown.Rmd and re-knitting to check what happens.

You can also name your chunks by putting something after the r before the
chunk options.

```{r summarizing, echo=FALSE}
summary(cars)
```

After you name your chunks, look what happens in the dropdown on the
bottom left of your editor pane.

Naming chunks allows you to browse through an RMarkdown document by
named chunks.

You can also browse by sections named using headers and subheaders.

37 / 46

UNIVERISTY OF WASHINGTON

In-Line R code
Sometimes we want to insert a value directly into our text. We do that using
code in single backticks starting off with r .

Today's date is `r Sys.Date()`

Today's date is 2021-06-22

You can also reference an object that you created in a chunk:

age <- 30

This year he is `r age` years old.

This year he is 30 years old.

Next year he will be `r age + 1` years old.

Next year he will be 31 years old.

38 / 46

UNIVERISTY OF WASHINGTON

R Markdown is really powerful!
Having R input values directly into your document makes sure you are
reporting your findings accurately:

Never wonder where a quantity came from. Just look at your formula in
your .Rmd file!

Consistency! No "find/replace" mishaps; reference a variable in-line
throughout your document without manually updating if the calculation
changes (e.g. reporting sample sizes).

You are more likely to make a typo in a "hard-coded" number than you are
to write R code that somehow runs but gives you the wrong thing.

39 / 46

UNIVERISTY OF WASHINGTON

Example: Dynamic Dates
In your YAML header, make the date come from R's Sys.Date() function by
changing:

date: "March 30, 2016"

to...

date: "`r Sys.Date()`"

Or even better, Format the output of Sys.Date()1:

date: "`r format(Sys.Date(), format = '%B %d, %Y')`"

June 21, 2021

[1] format(Sys.Date(), format='%B %d, %Y') says "format system date as month
name (%B), day-of-month (%d), and four-digit year (%Y): June 21, 2021. See ?strptime
for these format codes.

40 / 46

UNIVERISTY OF WASHINGTON

R Markdown Tables
Tables and data.frames in R markdown print just like the all other output:

head(mtcars)

But sometimes you want tables that look a little nicer in your output...

mpg cyl disp hp drat wt qsec vs am gear c
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3

41 / 46

UNIVERISTY OF WASHINGTON

Next1 2 3 4Previous

mpg
<dbl>

cyl
<dbl>

disp
<dbl>

hp
<dbl>

drat
<dbl>

wt
<dbl>

qsec
<dbl>

vs
<dbl>

Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1

1-10 of 32 rows | 1-9 of 12 columns

Load the rmarkdown package (do this once in your session, at the t
library(rmarkdown)
paged_table(mtcars)

42 / 46

UNIVERISTY OF WASHINGTON

Packages
A lot of R's abilities come packaged with your base R installation, and you will
use many of these
in your work. Examples of these abilities include
performing basic arithmetic, running linear models,
and visualizing your data.
However, you will also need to do things that aren't included in
Base R's
default functionality. For example, run structural equation models, estimate
inter-rater
reliability, and scrape data from the web. You could write all these
functions yourself, but this
is difficult and time consuming.

Packages are bundles of R functions that help you perform some kind of task.
For example, lavaan is a package used for structural equation modeling,
psych is a package used for estimating inter-rater reliability, and rvest is a
package used for scraping data from the web.1

Packages are installed to your local computer. To see where R is looking for
your currently
installed packages, type .libPaths() in your console

[1] These packages are also capable of performing other tasks. Check them out online!

43 / 46

UNIVERISTY OF WASHINGTON

Installing packages is easy:

install.packages("psych")

You only need to install a package once per R installation.

Use the console to install a package (don't put this in your script)

You can install several packages at once:

install.packages(c("psych", "lavaan", "rvest"))

To use a package in your script, use the library() function:

The packages name can be in quotes, but doesn't have to be
library(psych)

You can also use a function from a package without loading that package by
prepending the function call with the package name + :: . For example:

psych::ICC()

44 / 46

UNIVERISTY OF WASHINGTON

library vs. require
We just learned that library() is used to load packages at the beginning of
your script. You can
also accomplish this with require() . However, this is
unusual, slower, and has slightly different
behavior.

The only thing library() does for you is load your packages. If you don't
have the package installed,
you will get an error. Most of the time this is what
you want!

require() is designed to use inside R functions that you create yourself. If
you don't have the package installed,
you will get a warning1, not an error, and
the function will return FALSE . If the package is installed,
the function will
return TRUE . Most of the time this is extraneous behavior and makes reading
your code more difficult.

Example of proper use of require:

if(!require("package")) install.packages("package")

45 / 46

UNIVERISTY OF WASHINGTON

Package Repositories
Most of the packages you will use are stored on CRAN
(the Comprehensive R Archive
Network), which is
maintained by the folks at the R Project. By default,
install.packages() will
look at a CRAN mirror to download and install the requested
packages.

getOption("repos")

CRAN
"https://cloud.r-project.org"

You can install packages from other sources as well. For example, to install a package
from
github:

library(devtools)
install_github("DeveloperName/RepoName")
install_github("hadley/dplyr")

To install a package from your local computer:

install.packages(path_to_file, repos = NULL, type="source")

46 / 46

https://cran.r-project.org/

